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A B S T R A C T

From 2005 to 2012, injuries to children under five increased by 10%, possibly because smartphones distract
caregivers from supervising children. I exploit the expansion of AT&T's 3G network in both a difference-in-
differences and a triple difference framework and find that hospitals experienced a 5% increase in emergency
department visits for children ages 0–5, but none for children ages 6–10, after getting 3G. Age-specific injury
patterns on playgrounds, from poisoning, and in sports further support the conclusion that smartphones distract
caregivers.

1. Introduction

Nonfatal, unintentional injuries to children under five increased by
10% from 2006–07 to 2011–12 (CDC, 2012). Table 1, using data de-
scribed below, shows that emergency department visits increased sub-
stantially for children under five but hardly at all for children five and
older. This increase is puzzling because many investments over the past
few years have gone towards improving child safety. This rapid increase
in child injuries is a public health concern and worthy of policy con-
sideration, but currently there is no understanding of what caused this
sudden increase or what policy could address it.

Could the rapid adoption of smartphones explain this puzzle? In a
Wall Street Journal article, Worthen (2012) advances the hypothesis,
supported by many specialists, that smartphones distract parents from
supervising their children, which increases the risk of injury. But he
notes that no study has provided causal evidence linking smartphone
use to child injuries. This paper is the first work towards establishing
that causal evidence. Because smartphones— i.e. cell phones with the
ability to browse the internet, stream videos, send and receive emails,
and run various software applications—are a recent innovation that
provide unprecedented access to information and distractions, our un-
derstanding of their impacts on caregiver-child relations are limited and
need to be explored.

The effect of smartphones on child injuries has broader implications
for how smartphones affect children's human capital development.
While child injury patterns do not always inform us about factors af-
fecting human capital development, there are several benefits to using

them as a proxy in this context. First, just like parents and caregivers
prevent child injuries by providing attentive supervision, the highest
return investments in children's human capital come from attentive,
stimulating interactions (Price, 2008; Gertler et al., 2014; Sacerdote,
2007; Bjorklund et al., 2006). Caregivers who let smartphones distract
them during interactions with children may reduce the return on their
investment. In fact, caregivers could become so distracted that they
forgo investing in human capital at all (Olken, 2009). Second, child
injuries are salient and costly, such that if caregivers are distracted
enough to let children be injured, they may also be distracted during
critical learning opportunities whose effects are not realized until the
long-run.

Identifying the causal effect of smartphone use on child injuries is
difficult. Hospitals do not collect data on what caregivers were doing
when the child is injured, and any data attempting to survey this would
be subject to reporting errors. Also, because caregivers select into de-
vice use, research that relies on observing caregiver–child interactions
(e.g. Radesky et al., 2014) confound causal effects with selection driven
by caregiver preferences. Ideally, one would use random assignment to
address the question, like Byington and Schwebel (2013) do in a lab
setting to look at how smartphones increase personal injury risk in a
simulated street-crossing experiment.

Instead of directly investigating the impact of smartphones on in-
juries, I examine a narrower question: did hospitals experience a causal
increase in emergency department visits after getting access to the 3G
network? I use the advent of Apple's iPhone 3G combined with the
rollout of AT&T's 3G network to provide exogenous variation in the
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ownership and use of smartphones. At the iPhone 3G's release in 2008,
consumers could use it only on AT&T's network, and not all cities had
immediate access to its 3G network. Because 3G coverage is in-
dependent of individual caregiver characteristics and other accident-
causing factors, differences between covered and non-covered areas
reflect the influence of smartphones on injuries. For the analysis, I use
data that matches AT&T's rollout to hospitals in the National Electronic
Injury Surveillance System (NEISS), created by the Consumer Product
Safety Commission (CPSC) to track all consumer product related in-
juries in emergency departments at a nationally representative sample
of hospitals.

Using the hospital-level variation in 3G access, I find hospitals ex-
perience a 9% increase in emergency department visits for children
under five after receiving AT&T's 3G network. To further control for
confounding factors that are correlated with 3G entry, I also perform a
triple difference analysis, using children between the ages of five and
ten as the control group because of their weaker dependence on care-
givers for supervision. The triple difference results show that 3G in-
creased ED visits for children under five by 5.3%. Using information on
how the injury occurred, I find that injuries increase in riskier activities,
when supervision can make a decisive role in preventing accidents, but
these effects are absent in activities where the caregivers are not the
primary supervisors and in activities where supervision makes no dif-
ference on outcomes. The evidence from these results strongly supports
a scenario where caregivers are distracted by their smartphones and
decrease supervising children.

This paper contributes to a literature on the effects of media on the
family and society. Methodologically, I follow the literature, as sur-
veyed by Price and Dahl (2012), using natural variation in the avail-
ability of the media to estimate the causal effect. Economists have
looked at how television and video games affect child human capital
development and have found positive (Kearney and Levine, 2015;
Suziedelyte, 2015) or no effects (Gentzkow and Shapiro, 2008). Al-
though I do not have direct measures of cognitive effects, I contribute to
the literature on media and the environment affecting children. For
instance, evidence from Brazil and India shows that television em-
powered women and decreased fertility (La Ferrara et al., 2012; Jensen
and Oster, 2009); thus, television could indirectly improve children's
long-run outcomes by empowering their mothers and reducing the
quantity of children needing resources. Furthermore, Olken (2009)
shows that radio and television decreased participation in Indonesian
social organizations, and some worry that smartphones may have a
similar effect on social capital by diverting the attention of those who
still participate. My results indicate this may be an issue, since care-
givers are allowing themselves to be distracted, resulting in their chil-
dren being injured.

Regarding cell phones specifically, I examine a new effect

previously unexplored in the literature. One of the most extensive lit-
eratures on cell phones is the effect they have on car accidents through
distracted driving (for a survey, see McCartt et al., 2006). Although this
is an important issue, most of the time people use their phones is out-
side of a vehicle, and the literature has little to say on the effects of
these uses. Of course, studying these other outcomes is difficult because
of measurement and identification. A large contribution I make is in-
troducing a new identification strategy, the rollout of 3G, that may help
address other questions on the effect of smartphones on daily life.

2. How smartphones increase injuries

The primary mechanism by which smartphones would increase injuries
is by distracting caregivers from supervising children. Distractions have
always existed–whether it is reading a book, chatting with a friend, or using
a phone–but smartphones provide access to a greater variety and frequency
of distractions. Smartphone owners can browse the internet, check social
media, and stream videos. Prior to smartphones, caregivers had infrequent
access to distractions; text messaging and phone calls can distract only when
the other party responds, but smartphones can always access the internet
independent of other parties' actions. Moreover, many smartphone content
creators have engineered the content to explicitly capture the user's atten-
tion in ways unavailable in other formats. The designers optimize content to
keep the user engaged, and when the user stops, the content issues alerts to
draw the user back.1 By lowering the costs of accessing distractions, the
smartphone increases the opportunity cost of supervising children, and
therefore caregivers increase phone usage and decrease supervision.

Another mechanism to consider is that smartphones alter how and
where users spend their time. If the distraction mechanism is like a
substitution effect, this mechanism would be the income effect: because
caregivers are no longer tethered to their place of work, they effectively
have more time. For example, after getting a smartphone, a caregiver
may take the child to the playground more instead of having the child
watch television because the caregiver can now access e-mails there.
The child might get injured more, but not because the caregiver is
distracted but instead purely because the child goes to the playground
more. The smartphone has changed the activities in which the child
participates. Under this participation effect, smartphones do not have to
distract caregivers to increase injuries: if caregivers and children par-
ticipate more in activities that are risky, then mechanically the number
of injuries will increase. However, data from the American Time Use
Survey hints that the participation effect did not drive the increase in
injuries. From 2003 to 2015 the average time adults spent in activities
with children decreased (Hofferth et al., 2015). Thus, the main effect
will come from the distraction mechanism.

2.1. Using the 3G rollout

To understand how smartphones influence child injuries, I look at
the effect of 3G on hospital emergency department (ED) visits for
children under five. This approach relies on the fact that not all cities
received 3G at the same time, which affects smartphone use across ci-
ties. The identifying assumption is that after controlling for hospital and
month-year fixed effects, the arrival of 3G is orthogonal to unobserved
factors influencing injuries.

I use the expansion of AT&T's network because it was the exclusive
iPhone carrier until 2011.2 The iPhone started the modern smartphone
era, and it quickly gained a considerable market share after its release:

Table 1
Change in National Annual Emergency Department Visits in NEISS data by age group
from 2005 to 2012.

Age 2005–06 average 2011–12 average Pct. increase

0 224,443 239,015 6%
1 352,350 386,498 10%
2 370,600 400,494 8%
3 299,590 332,668 11%
4 260,815 288,085 10%
5 243,403 251,342 3%
6 218,943 222,375 2%
7 212,250 217,986 3%
8 218,486 223,527 2%
9 228,344 245,280 7%
10 256,700 266,439 4%

Notes: The figures are two year averages; i.e. from January 1 of the first year to December
31 of the second.

1 The social network game Cow Clicker by Ian Bogost provides an example of how
games can become successful just by exploiting psychological engineering. Players had
one objective: click on a cartoon cow every 6 h to try and acquire the most clicks amongst
your friends. Users could share their clicks on Facebook. The game became a surprise hit.
https://www.wired.com/2011/12/ff_cowclicker/all/1.

2 Apple released the iPhone 3G, 3Gs, 4, 4S during this period, and sales of iPhones
increased consistently during the entire period.

C. Palsson Journal of Public Economics 156 (2017) 200–213

201

https://www.wired.com/2011/12/ff_cowclicker/all/1


in the iPhone 3G's first year, consumers bought over 20 million units
and downloaded over 1.5 billion applications from the App Store
(Apple, 2009), and Apple's market share in December 2009 was five
times that of its closest competitor, Android (ComScore, 2010). Other
networks also provided 3G, but only AT&T could provide the market's
most popular phone, and therefore AT&T provided the most important
change.

An important question to consider is what drove AT&T's supply
decisions; i.e. why markets receive 3G at different times and whether it
affects the identification strategy. Establishing a network requires in-
stalling enough infrastructure to provide seamless coverage, and this
infrastructure requires large capital outlays. For instance, for AT&T to
build a 3G network, in less than two years it spent $30 million in
Houston, $40 million in Chicago, $50 million in Dallas, and $65 million
in San Francisco (AT&T, 2009a,b,c, 2010). At a minimum, a firm would
not enter the market unless the present expected value of revenues
exceeded the cost of installation. Uncertainty about adoption reduces
the expected revenues, and uncertainty could vary across markets.
Furthermore, AT&T has to consider that the technology is evolving and
that upgrades (such as 4G) will also require costly installations. Thus
market entry is an optimal stopping problem, which creates variation in
the timing of entry across markets.

For my identification strategy to be valid, AT&T's supply decisions
must be orthogonal to other unobservable factors that influence injuries
and changed over time. Fig. A1 shows the geographical distribution of
hospitals with dots representing how long they had 3G, and an urban-
rural pattern, where urban areas receive 3G sooner, is clearly present. A
hazard analysis, reported in Table A2, confirms this pattern and reveals
that early 3G adopters had higher population levels and density, but did
not have higher household incomes, than later adopters. Population-
based expansion is consistent with similar products that benefit from
network externalities; for example, population patterns predict Uber's
rollout too (Hall et al., 2017). Population differences and other un-
observed, time-invariant factors that influence AT&T's supply decisions
will be captured in the hospital fixed effects. If population growth is
parallel across cities, then the month-year fixed effects will capture it;
nevertheless, Section 5 examines differences in population growth
specifically. The month-year fixed effects also control for the macro
shocks, such as the recession, that affect all cities at the same time.
Controlling for these fixed effects, the presence of 3G is exogenous to
other factors affecting ED visits.

The variation in AT&T's 3G coverage coincides with the increase in
child ED visits. Fig. 1 shows the fraction of hospital-months that have
3G coverage by year. In 2008, just under 30% of hospital-months had
3G coverage, and in the final years about 80% of hospital-months were
covered. About 20% of the hospitals even today do not have 3G cov-
erage. Fig. 1 also plots the aggregate number of injuries for each year in
the same graph, and a very strong correlation emerges. The correlation
is insufficient to prove the causal hypothesis, but it gives proper mo-
tivation for the rest of the analysis.

2.2. Predictions

Because individual-level data linking smartphone use and child in-
juries is unavailable, I follow similar methodology as Moretti (2011)
and outline intuitive comparative statistics that I can use on aggregate
data. Taking the two mechanisms (distraction and participation) men-
tioned above into consideration, I outline three hypotheses that will
guide my empirical work.
Hypothesis 1. If smartphones increase child injuries, then areas that
receive 3G will have a greater increase in child ED visits than those
without.

The availability of 3G affects the value of a smartphone because
without it owners cannot fully exploit the phone's features. Some con-
sumers will purchase a smartphone before 3G in anticipation of the

network's availability, but even then the consumer cannot use it as
much as others who have the network already. Hence, injuries will
increase faster in 3G areas. This hypothesis holds for both of the me-
chanisms.
Hypothesis 2. Smartphones will increase injuries more for younger
kids than for older kids.

In reducing unintentional injuries, supervision has a differential
impact by the child's age for two reasons. First, younger children are
less able to identify risk and do so slower than older children (Hillier
and Morrongiello, 1998). Caregivers have a strong effect on preventing
unintentional injuries (Morrongiello and Dawber, 2000; Power et al.,
2002; Schwebel and Brezausek, 2004), and being distracted will
weaken this effect. Even the policies of childcare services recognize that
younger children are at a greater risk of injury without proper super-
vision.3

The second reason why distractions will have a smaller effect on
older children is that older children participate in fewer supervised
activities. Because children gain more awareness as they age, caregivers
give them more freedom. Furthermore, older kids spend most of the day
in school, where smartphones will have little to no effect on the tea-
cher's behavior because of external enforcement. This means that even
if caregivers adjust their supervision based on the child's age, the effect
is still larger for younger kids.
Hypothesis 3. Holding participation rates constant, smartphones will
increase injuries in risky activities but not in low-risk activities.

Decreases in supervision have a differential impact based on the
activity's risk-level. If smartphones distract caregivers, then we should
see more injuries in high-risk activities. High-risk activities alone,
however, will not inform us why injuries are increasing. While the
distraction mechanism unambiguously implies that injuries will in-
crease in high-risk activities, the participation mechanism could go
either way. If smartphones decrease the opportunity cost of low-risk
activities relative to high-risk activities — e.g. children play games on
smartphones instead of at the park — then injuries in high-risk activ-
ities might decrease. On the other hand, if it decreases the opportunity
cost of high-risk activities relative to low-risk— e.g. caregivers take
their kids to the playground more because they can still do work

Fig. 1. Nonfatal injuries involving consumer products for children under 5 in the US and
Hospital 3G coverage, 2001–2012. Notes: Injury data comes from weighted counts in the
NEISS data. The 3G trend is the share of hospital-months in the NEISS data that had 3G in
a given year.

3 For example, to be accredited by the National Association for the Education of Young
Children (NAEYC), an early childhood program must have higher staff-to-child ratios for
younger children: two teachers can coteach a class of up to 24 kindergartners (about age
5), but the same two teachers for a class of one to two year olds could have at most 12
toddlers (NAEYC, 2013, p 89).
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there— then injuries in high-risk activities will increase. To distinguish
between the participation and attention mechanisms, we need to find a
high-risk activity whose participation rates do not change once care-
givers have smartphones.

If smartphones decrease supervision, then there should be no in-
crease in injuries in activities where the child is supervised by someone
without or unable to use a smartphone or in activities where adult
supervision has a negligible impact on injuries. For example, at school,
teachers face external consequences for using cell phones when they
monitor students. Because their cell phone use is restricted, we should
not observe increases in injuries at schools. Similarly, in sport-related
activities, injuries occur regardless of adult inputs because supervisors
cannot directly intervene and verbal inputs can be drowned out by the
environment. This implication provides a falsification test of the at-
tention hypothesis.

3. Data on injuries and 3G coverage

Testing the hypotheses from Section 2.2 requires combining injury
data with the 3G rollout, as described below.

3.1. NEISS

Data for nonfatal child injuries come from the National Electronic
Injury Surveillance System (NEISS) run by the Consumer Product Safety
Commission (CPSC) to aid its mission of protecting consumers. From
the population of U.S. hospitals, the CPSC used stratified random
sampling to select 100 for observation, employing enumerators at each
hospital.4 The enumerators review daily records for all of the hospital's
emergency cases and record “all consumer product-related emergency
visits” (CPSC, 2014). The CPSC defines “consumer product” and “pro-
duct-related” broadly enough that the database represents 67% of all
unintentional injuries.5 NEISS records the patient's age, where the in-
jury occurred (e.g. home, school, etc.), the product involved, and the
hospital where the patient was treated. The CPSC has collected these
data since 1971, and it has made no major changes to the system since
2000 CPSC (2000).

The data are particularly useful for this research question because
the CPSC's interest in how an injury occurred helps overcome the re-
porting problem. Other data sets might contain a broader sample of
hospitals or more detailed information on the injury and treatment, but
the research question concerns how injuries happen. No data set can
overcome the reporting problems involved with directly measuring
whether the child was injured because the caregiver was looking at a
smartphone–the adult might not be aware of the smartphone's role or
could obfuscate to cover guilt. To be clear, no variables correspond to
whether a phone was involved in the injury. The CPSC does provide a
code for whether a phone was involved, but these are cases where the
patient was on the phone or hurt by a phone. For example, in one case a
45 year-old man missed catching a thrown phone, and it hit him in the
mouth giving him a 3.5 cm laceration on the lip.6 In these cases, the
phone directly interacts with the patient, but the injuries we are

interested in occur when the phone interacts with a supervisor and the
patient gets injured. Nevertheless, because the data detail the injury's
circumstances, I can provide indirect evidence of smartphone distrac-
tion by classifying situations according to how risky they are without
supervision. For instance, young children face a lot of risk on play-
grounds when caregivers do not monitor them; therefore, a sudden
increase in playground injuries once smartphones arrive supports the
distraction hypothesis. The analyses in Sections 4.1 and 4.2 look at all
injuries, regardless of the activity or product involved, and then sub-
sequent analyses in Section 4.3 take advantage of specific location and
product codes to get at the distraction mechanism.

3.2. AT&T's 3G rollout

Data for the AT&T 3G coverage comes from AT&T press releases
available on its website. With the completion of almost every 3G in-
stallation, AT&T issued a press release announcing the cities where it
had extended coverage. Using the date of the press release and the cities
named, I can reconstruct the rollout of coverage. To validate the press
releases and fill gaps, I also grabbed historical data for the AT&T
Coverage Viewer from the Internet Archive Way Back Machine7. To
construct my treatment variable, I found when each hospital received
3G coverage from AT&T.

Coverage is a binary variable equal to one after the iPhone release in
July 2008 as soon as a city within 35 miles of the hospital receives 3G.8

Some cities received 3G in 2008 before July, but the treatment is access
to 3G and the iPhone 3G, so these observations are coded as not having
3G until July.9 The 35 mile radius accounts for the fact that the cov-
erage lists only mention big cities when they mean surrounding areas
also received 3G at the same time. For example, the NEISS data include
a hospital in Gaithersburg, Maryland, but Gaithersburg is never men-
tioned in the coverage lists or press releases; however, it is about
15 miles from Washington, D.C. and 30 miles from Baltimore, and a
coverage map from 2008 clearly shows that the Gaithersburg area was
covered. Hence, the radius accounts for the coverage data citing only
major cities.

To clarify, the radius is intended to capture the AT&T network, not
the distance between patients and hospitals. Patients drive much
shorter distances to reach hospitals, but shortening the radius leads to
significant measurement error. For example, suppose we cut the radius
from 35 miles to 15. Under these two radiuses, 80% of the entry dates
are the same, but of those that do not match the 15 mile radius codes
90% as never getting 3G. The shorter radius is too strict to match any
cities in the data.

We can see the problem the shorter radius creates by looking at
AT&T's coverage map in July 2008. Although the maps do not exist for
every month, the July 2008 map was widely circulated to warn con-
sumers ahead of the iPhone 3G release.10 The map gives a measure of
coverage at a single point in time and allows us to check the radius
approach against actual coverage. Of the cities that the 15 mile radius
codes as never treated, 40% had 3G in July 2008. In contrast, the

4 The CPSC divided all 5388 hospitals in the United States into four strata. One stratum
consisted of all children's hospitals in the universe (n = 50) regardless of size. They
divided the remaining hospitals into four strata based on the total number of annual
emergency department visits. Surveyors then randomly selected hospitals within each
strata. For further information on the sampling procedure, see Schroeder and Ault (2001).

5 The CPSC defines consumer product as “ any article produced or distributed for use
by a consumer in or around a home, school or recreational area.” Product-related includes
(1) all poisonings and chemical burns to children under 5 years of age, (2) all injuries
where a consumer product, sport, or recreational activity is associated with the reason for
the visit or related to a condition treated, and (3) illnesses only if a consumer product/
activity is associated with the onset of the illness. For more information, see CPSC (2014).

6 CPSC Case #101218722. Common injuries under this category include senior citizens
falling out of bed while reaching for a phone, people tripping over telephone cords, or
users getting shocked while plugging a phone into an outlet.

7 The AT&T Coverage Viewer provides a lsit of cities with 3G available and can be
accessed at http://www.wireless.att.com/coverageviewer/popUp_3g.jsp. The Internet
Archive Way Back Machine allows users to access cached versions of web pages by date
and is available at http://www.archive.org/web.

8 In Table A1, I list the cities in the NEISS according to when they got 3G. For clarity of
presentation in the table, I group the hospitals into five periods, but in the analysis I use
the exact month and year the city received 3G.

9 In regressions not reported here, I defined an additional treatment variable for
whether a city had 3G in a month before July 2008. The point estimate for this treatment
was less than 0.001 and was statistically insignificant, which suggests getting 3G without
an iPhone had no effect. However, the treatment could be identified off of only three
months of data, and therefore was not included in this paper.

10 For an example, see Nicholas Deleon's Techcrunch article “Are you in an AT&T 3G
coverage area?” published July 10, 2008. Available at https://techcrunch.com/2008/07/
10/are-you-in-an-att-3g-coverage-area/.
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35 mile radius correctly codes all but one of these. In a world where 3G
coverage is expanding and smartphone penetration increasing, coding
treatment is like travelling by train: if you catch an earlier train, you
spend some time sitting around but you still reach your destination,
whereas if you miss the last train you never make it. Similarly, if the
35 mile radius codes treatment too early, the worst case scenario is that
eventually the coding is correct, whereas if the 15 mile radius misses
treatment it never codes the city as treated. Thus the shorter radius
leads to more measurement error and confounds the treatment effect.
Therefore, throughout the paper I use the 35 mile radius. Nevertheless,
Section 5 examines the result's robustness to using a 15 mile radius.

3.3. Privacy restrictions

Because the NEISS contains sensitive patient information, the CPSC
cannot release the hospital or city where the patient was treated. The
CPSC can release the list of all cities in the data, but it cannot release
matched city–incident data. To maintain privacy standards, I used the
city list and coded the 3G roll-out, as detailed above; I then sent the
matched list to the CPSC, who merged the coverage data onto the NEISS
and removed any identifying information. The data contain anon-
ymized hospital identifiers, which allow me to identify the same hos-
pital across observations, but I do not know where the hospital is in the
U.S. The CPSC agreed to provide the data because my treatment vari-
able is binary and 3G expands in waves, limiting the opportunity to
identify specific hospitals. The CPSC does not allow continuous vari-
ables, on the other hand, because someone could more easily use them
to identify the observations and violate the privacy concerns.11 Thus, I
cannot add variables such as population or smartphone use rates. This
restriction prevents me from estimating the elasticity of injuries to the
population of smartphone users, but it does not inhibit finding causal
effects of 3G on ED visits.

The big strength of the data is that it is a large, high-frequency
panel. Controlling for hospital fixed effects eliminates permanent, un-
observable differences across hospitals correlated with the 3G expan-
sion. Furthermore, I can control for hospital-specific trends in injuries.
The data do have their weaknesses. For instance, children could be
injured in a non-consumer product related accident, which account for
a third of unintentional injuries, or enumerators could miscode injuries.
More importantly, using this data imposes a restriction that the injury
had to be severe enough to warrant a hospital visit.

The unit of observation in the final data set is the total ED visits at
hospital h in month t for age a. The sample starts in January 2003 and
ends in December 2012. The final data set also aggregates injuries at the
hospital-month-age level for some products and locations. While the
product data is rich in detail, the injury location data (i.e. whether the
injury occurred at home, in a public space, etc.) is not as complete, with
25% of the injuries listing “unknown” for the location. I include all of
these observations in the main results, but I cannot use them in the
analyses in Section 4.3 that rely on knowing the location. I assume the
unknown locations are random and that omitting them from the loca-
tion-specific subsets does not bias the results.

4. Testing for a causal link between smartphones and injuries

If smartphones cause injuries by distracting caregivers, then the
data should reflect patterns consistent with the hypotheses in Section 2.
Testing the hypotheses' econometric analogs shows the data are con-
sistent with smartphones distracting caregivers.

4.1. Hypothesis 1: child injuries should increase after 3G arrives

To test the effect of 3G on child ED visits, I do a difference-in-dif-
ferences analysis exploiting the differential exposure to 3G. I estimate
the following regression

= + + + +
− y δ δ δ β G εsinh ( ) 3hta h t a ht ht

1 (1)

where yhta is the number of visits at hospital h in month t for age group
a. The hospital dummies (δh) control for permanent differences across
hospitals, and the month-year dummies (δt) control for transitory
shocks that affect all hospitals in the same period. The age dummies (δa)
account for differences across the ages included in the sample, which is
limited to patients under the age of five. I use the inverse hyperbolic
sine (IHS) as the dependent variable to resolve concerns with months
where a hospital records zero ED visits for an age group.12 In a re-
gression framework, the IHS behaves like the log transformation
(Burbidge et al., 1988), but the IHS is defined at zero. The coefficient
can be interpreted as a percentage change. The results are robust to
other dependent variable specifications, which I include in Appendix
Table A3.

The results show that ED visits for children under five increased
after 3G arrived. Table 2 shows that after 3G entered, ED visits in-
creased by 9–10%, and the estimate is significant at the 5% level with
standard errors clustered at the hospital level. Column 2 in Table 2
estimates the same regression with hospital-specific trends to control
and the magnitude drops to 4%. This second estimate is not sig-
nificantly different from zero, but it is also not significantly different
than the first estimate. Measuring a smaller treatment effect after in-
cluding hospital-specific trends is consistent with the discussion in Meer
and West (2016), which shows that time trends as controls can at-
tenuate estimates in a difference-in-differences framework.

The difference-in-differences' validity relies on the parallel trends
assumption, and to test for this assumption I estimate a regression that
includes dummies for six-month bins before and after 3G entrance. The
parallel trends assumption predicts that βt=0 for all t before 3G and
βt>0 for all t after. The results are consistent with these predictions. I
plot the coefficients and their standard errors in Fig. 2. The omitted
group is the six months prior to the entrance of 3G, such that all
coefficients are relative to the injuries occurring in this period. All of
the pre-period coefficients are indistinguishable from zero; further-
more, there is no distinct trend in the magnitudes, and the coefficients
even flip signs. On the other hand, all of the post-period coefficients are
positive and most are statistically significant. Thus, before 3G arrived,
treated areas looked similar to non-treated areas, and only after 3G
arrived did they diverge.

4.2. Hypothesis 2: injuries should increase more for younger children than
older children

Hypothesis 2 says we can use variation across age groups in a triple
differences analysis to identify the effect. If injuries increase because
smartphones distract caregivers, then older children provide a natural
comparison group because they rely less on caregivers when evaluating
risky situations. By splitting the observations into under five years old
and five and older, I estimate the following regression

= + + + + +

+ +

− y δ δ δ δ Under δ Under β G
β G Under ε

sinh ( ) * 5 * 5 3
3 * 5 .

hta h t a h a t a ht

ht a hta

1
1

2 (2)

This regression includes all injuries to children 10 and younger, with
the Under5a dummy indicating whether age group a is young enough to
be affected by 3G. Hypothesis 2 predicts that there should be no effect
of 3G on older children (β1=0) and a positive effect for younger
children (β2> 0).

11 For example, if the data contained the city's population, it would take little work to
match the observations with the city list. 12 14.8% of hospital-month-age group observations record zero visits.
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The triple difference approach supports the conclusion that smart-
phones increased child injuries and is responsible for most of the in-
crease from 2005 to 2012. The results reported in Table 3 indicate that
the effect falls on the younger children. Older children experience a
4–5% increase in injuries, but this coefficient is not statistically sig-
nificant. Younger children, on the other hand, see a 5% increase above
the older children, significant at the 5% level. Again, consistent with

findings in Meer and West (2016), including hospital-age-group trends
attenuates the estimate for younger children to 4% and eliminates any
effect for older children. This finding is robust to other regression
specifications reported in Appendix Table A3. Of the estimated effect in
the original difference-in-differences regression, factors that affect ev-
eryone explain 48%, and 3G expansion explains the remaining 52%.

The triple difference results eliminate many confounding factors
because they show no evidence of increase for injuries to older children.
If migration or improved facilities were the cause, we would observe a
change for children of all ages. Indeed, any alternate hypothesis must
explain why the effect differs by age. The expansion of 3G coincides
with the same time period as the recession, which had a differential
effect across cities and could through some mechanism increase injuries
or ED visits. But a recession story cannot explain why ED visits increase
only for the younger kids. Second, the analysis dispenses supply-side
explanations. These supply-side stories involve local changes that in-
crease ED visits—for example, new playgrounds that provide more
opportunities for children to get hurt, or hospital improvements that
increase the demand for ED services—and are correlated with the
treatment. But again, these explanations cannot explain the differential
results by age.

4.2.1. Treatment heterogeneity by age
While splitting children between younger and older than five is not

completely arbitrary, it can mask heterogeneous effects by age.
Separating the groups at age five makes sense considering children in
the U.S. start school at that age and therefore move into an environment
where the probability of injury greatly decreases. Yet there is no reason
why the effect should be the same for all kids under five, and even kids
five and over could still suffer from distracted caregivers. The hy-
pothesis states the effect should be decreasing in age, since two year-
olds need more supervision than three year-olds, and so forth.

To address the heterogeneity, I run a triple difference regression
separately for each age group younger than ten, using injuries to ten
year-olds as the control group; i.e. I run ten different regressions for
each age group from zero to nine, each with ten year-olds as the control
group. Fig. 3 plots the coefficients for the 3G treatment from each re-
gression, and the pattern is clear: the effect is decreasing with age.

4.2.2. Feasibility of magnitudes
So far, I have focused on making a causal case for injuries increasing

after 3G arrives, but I have ignored the magnitudes. The triple differ-
ence results indicate that hospitals had 5% more ED visits for children
under five after 3G entered. But is this even a feasible effect size given

Table 2
Difference-in-differences estimates of the effect of 3G on child injuries.

(1) (2)

3G 0.096** 0.041
[0.046] [0.031]

Hospital-specific trend No Yes
N 54,865 54,865
Adjusted R2 0.83 0.84

Notes: The dependent variable is the inverse hyperbolic sine of the number of ED visits for
children a years old in hospital h in month t, and sample includes only ED visits for
children under five. All regressions contain hospital, age, and month fixed effects.
Standard errors are clustered at the hospital level.

** p < 0.05.

Fig. 2. Checking pre-existing trends: the effect of 3G over time on injuries to children 5
and under. Notes: Coefficients come from a specification similar to Table 2 (see notes)
except instead of a 3G dummy the regression uses time dummies grouped in six-month
bins. Positive values of T correspond to months after the market received 3G, and ne-
gative indicate before.

Table 3
Triple difference estimates of the effect of 3G on child injuries.

(1) (2)

3G*(Age < 5) 0.050* 0.042
[0.022] [0.027]

3G 0.046 −0.0013
[0.043] [0.032]

Age < 5 0.54*** 0.58***

[0.037] [0.048]
Hospital-age-group-specific trend No Yes
N 120,703 120,703
Adjusted R2 0.81 0.82

Notes: The dependent variable is the inverse hyperbolic sine of the number of ED visits for
children a years old in hospital h in month t, and sample includes ED visits for children ten
and under. All regressions contain hospital, age, and month fixed effects as well as age-
group-hospital and age-group-month interactions. The hospital-age-group-specific trend
is a linear trend for each age group (“under five” and “five and over”) in each hospital.
Standard errors are clustered at the hospital level.

*** p < 0.01.
* p < 0.10.

Fig. 3. Effect of 3G on hospital ED visits by age group. Notes: Coefficients are the
treatment effects in a triple difference regression pairing each age group with 10 year olds
as the control group. Standard errors are clustered at the hospital level.
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the market penetration of smartphones?
A back-of-the-envelope calculation shows this is a reasonable effect.

Assuming the effect is constant for the whole country, I take the
2005–06 average injuries for each age group under 5, found in Table 1,
and multiply them by 5%, the coefficient from the triple difference
specification. This calculation says that we would find an extra 75,390
injuries by 2011, when the 3G coverage is complete. According to the
PewResearch Internet Project (Pew Research Center, 2011), in 2011,
7% of Americans adults owned a smartphone and had a child under the
age of 5. Taking the adult population of the U.S. to be 250 million, then
the implied injury rate is 4.3 out of every 1000 parents of children 5
and under who use a smartphone experience an injury. To put this
number in perspective, the injury rate for cars is about 10.6 per 1000
drivers (NHTSA, 2010); the injury rate from cars is more than twice the
injury rate for smartphone users, yet the car injury rate is not high
enough to prevent millions of drivers from taking the risk every day.
Hence, while the increase is significant relative to the overall injury
rates, it does not seem unreasonable to believe relative to the popula-
tion of smartphone users.

Comparing the effects of smartphones on child injuries with the
effects of cell phones on car accidents raises questions on how phone
users adapt to increased risk. The two most convincing papers in the
cell phones and car accidents literature find opposite results.
Redelmeier and Tibshirani (1997) use cell phone bills to match phone
use with the timing of accidents and find that the risk of collision was
four times higher while using a phone. On the other hand, Bhargava
and Pathania (2013) use variation in cell phone pricing in a regression
discontinuity design and find small effects. But the data from these two
studies are separated by 10 years, and users might have adapted to the
increased risk over this period. I look at a period of introduction and
rapid adoption, allowing me to look at outcomes before users can adapt.
Fig. 1 shows that injuries quickly increased from 2008 to 2010 and then
leveled off, suggesting that caregivers might have already adapted by
the end of the period. More work should be done on the short– and
long–term effects of cell phones on accident risk.

4.3. Hypothesis 3: smartphones increase injuries where supervision is
important

Testing this hypothesis uses variation in how the injury occurred to
identify distraction as the causal mechanism. If smartphones distract
caregivers, we should observe injuries increase in activities where
caregivers play a significant role in preventing injuries and no change
where they have little influence. Below I provide three examples of
activities that vary in their supervision levels.

To test for differences in caregiver influence, I hold risk constant by
looking at injuries that occur on playground equipment but at different
places. With the NEISS data, I can split injuries between those that
happen at school playgrounds and those that happen at non-school
playgrounds. Injuries that occur at school are unlikely to be influenced
by smartphones since the teachers face external incentives to not use
their phones when they should be supervising. Furthermore, teacher
supervision is divided across many children, such that an overall de-
crease in supervision is a much smaller decrease when considered in per
child terms. On the other hand, if the distraction effect exists, then non-
school playground injuries could increase since caregivers are more
likely to supervise children in these situations.

Two distinct triple difference strategies suggest smartphones in-
creased injuries. The first strategy compares ED visits across ages for the
same type of playground. For example, the regression in the first
column and row of Table 4 includes only injuries that happen on non-
school playgrounds and compares children age zero to one with ten
year-olds. The identifying assumption here is that ten year-olds do not
need supervision and are therefore unaffected when smartphones dis-
tract caregivers. Under this strategy, ED visits from school playground
accidents serve as a placebo test. The first two columns of Table 4 report

the triple difference coefficient from 20 regressions, 10 ages and two
types of playgrounds. Consistent with the hypothesis, injuries increased
for non-school playgrounds but did not change for school playgrounds.
Indeed, the school playground injuries hint that playground-related
injuries may have decreased over this period had smartphones not
entered. It is important to note that there was no increase for non-
school playground injuries children under one, who are too small to
play on playgrounds and effectively serve as an additional placebo test
strengthening the identification strategy's validity.

The second strategy compares ED visits for the same age across
playground types. The identifying assumption is that smartphones af-
fect injuries at non-school playgrounds but not at school playgrounds.
This specification eliminates concerns of whether ten year-olds serve as
an adequate control group for two year-olds by using the same age as a
control group. Table 4’s third column reports the 11 triple difference
coefficients. The story stays the same— injuries increase on non-school
playgrounds after 3G arrives.

Unfortunately, these results alone cannot tell us whether the in-
crease in injuries comes from the distraction effect or the participation
effect, since either could cause this increase. Indeed, the equal effect
across all ages could be because the participation mechanism is non-
zero since the distraction effect implies a larger impact for younger
kids. To test Implication 3, which isolates the distraction effect, I need
to identify activities whose participation rates will be unaffected by the
introduction of smartphones.

One class of injuries that fits this qualification are poisonings;
smartphones should not put caregivers in situations where children are
more at risk of ingesting hazardous materials. In fact, the only way 3G
could be related to an increase in poisoning is if caregivers are dis-
tracted and fail to warn children. In Fig. 4 I plot the effect of 3G on ED
visits involving poisoning, again using a triple-difference regression by

Table 4
The effect of 3G on playground injuries: results from different triple difference strategies.

(1) (2) (3)

Treated Row age on non-
school playgrounds

Row age on school
playgrounds

Row age on non-
school playgrounds

control 10 year-olds on non-
school playgrounds

10 year-olds on
school playgrounds

Row age on school
playgrounds

Age 0 −0.015 −0.0068 −0.0022
[0.015] [0.016] [0.0074]

1 0.037** −0.0055 0.049***

[0.017] [0.016] [0.017]
2 0.036* −0.00018 0.043**

[0.019] [0.017] [0.018]
3 0.019 −0.019 0.044**

[0.017] [0.017] [0.020]
4 0.050** 0.008 0.048***

[0.020] [0.019] [0.018]
5 0.022 −0.011 0.039

[0.021] [0.018] [0.028]
6 0.046** −0.0097 0.062**

[0.023] [0.018] [0.029]
7 0.039* −0.0081 0.054**

[0.022] [0.016] [0.026]
8 0.040** −0.0034 0.050**

[0.018] [0.016] [0.025]
9 0.024 −0.0096 0.040**

[0.018] [0.015] [0.020]
10 0.0064

[0.019]

Notes: Each cell reports the triple difference coefficient from a different regression. All
regressions use differences across hospitals before and after 3G entrance, but the third
difference varies across regressions as indicated by the treated and control groups at the
top of each column. All regressions have 21,946 observations, and standard errors are
clustered at the hospital level.

*** p < 0.01.
** p < 0.05.
* p <0.1.
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age with 10 year-olds as the control group. The pattern unmistakably
reflects distracted caregivers: children less than one experience no
change because they are not mobile; and children three and older do
not either because they have been taught to avoid these materials; but
one and two year-olds, the children most dependent on supervision
because they are mobile and curious, experience a 6–8% increase in ED
visits. The results are consistent with distracted caregivers.

Finally, I look at an activity where supervision makes little differ-
ence but participation might increase: sports-related injuries. Spectator
input has little effect on the moment-to-moment outcomes in sports,
even in the small audiences that view children's sports. Thus, super-
vision should have no effect on injuries. However, children might play
sports more if their caregivers are more willing to take them to play,
which would increase injuries. In the sports-only sample13, in Fig. 5, 3G
has no effect on injuries. Because sports are one of the areas where the
participation effect would be most evident, this suggests that partici-
pation is not driving the injuries.

5. Robustness checks

5.1. Timing of the effect

Finally, one concern to resolve is a general time-trend that could con-
found the analysis. The data cover a long time horizon, and one fear when
comparing pre- and post-treatment means is that the time trend was in-
creasing through the entire sample period, and this gradual trend is lost in
measuring the treatment effect. In Table 5 I present results using three
different time horizons: the full sample, one year before and after the iPhone
3G release, and six months before and after. Restricting the sample size
reduces the power of my estimates, yet the results are consistent. Even when
looking in 2008, I find an increase in injuries only for children under five
and only in cities that had 3G coverage at the time of the release. This result
is particularly important because this window contains cities that eventually
receive 3G but do not have it by the end of 2008, so the result is not an
artifact of city-specific characteristics that affect both child injuries and
where AT&T chose to expand its market.

5.2. Demographic trends

The work thus far has assumed that 3G expansion is unrelated to
other factors affecting child injuries. This assumption is sound because
AT&T is not deciding supply based on how dangerous a city is for kids,
and it certainly does not time its expansion for when these cities be-
come more dangerous. Yet AT&T does consider population trends in its
supply decisions, as shown in Section 2.1, and differential population
trends could generate these results.

To be clear, demographic trends cannot explain the puzzle that in-
juries to children under five increased by 10% over seven years. There
is no evidence of a demographic transition that occurred sharply at the
same time unintentional injuries rapidly increased. However, demo-
graphic trends could misattribute the cause to smartphones if 3G ex-
pansion is correlated with differential population growth trends, spe-
cifically if areas receiving 3G also had faster population growth rates.
Because AT&T expanded its 3G network to maximize profits, and be-
cause areas with faster population growth provide growing markets,
differential population growth could threaten identification. If the five
and over population grows at the same rate as the under five popula-
tion, then the triple difference specification will correct for this and the
estimates will be fine. However, AT&T could target areas where the
young adult population is growing faster since they are more likely to
adopt smartphones, and if this population is also having children at this
time, then in 3G areas the population younger than five would also be
increasing faster. However, while in theory these differential trends
could occur, the data do not support them.

The population in areas with 3G did grow faster than non-3G areas,

Fig. 4. Effect of 3G on ED visits involving poisoning. Notes: See the notes for Fig. 3. The
sample includes only injuries where the patient was poisoned.

Fig. 5. Effect of 3G in activities where supervision has little effect: sports injuries. Notes:
See the notes for Fig. 3. The sample includes only sports-related injuries. See footnote 13
on the definition of which sports are included.

Table 5
Estimating the triple difference with different time windows.

Full sample Jul 2007–Jul 2009 Jan 2008–Dec 2008

3G*(Age < 5) 0.050* 0.042 0.075*
[0.022] [0.027] [0.036]

3G 0.046 0.018 −0.03
[0.043] [0.030] [0.036]

Age < 5 0.54*** 0.38*** 0.71***

[0.037] [0.044] [0.041]
N 120,703 25,146 12,045
Adjusted R2 0.81 0.81 0.81

Notes: See the notes in Table 3 for details on the regression specification. Apple released
the iPhone 3G in July 2008, which is the center of each of the narrower time windows.

*** p < 0.01.
* p <0.10.

13 The sports included in the NEISS data are: bowling, boxing, croquet, football, golf,
lacrosse, archery, horseback riding, horseshoes, mountain climbing, billiards, surfing,
water skiing, volleyball, soccer, table tennis, wrestling, scuba diving, tetherball, ice
hockey, handball, snowmobiles, field hockey, snow tubing, water tubing, skeet shooting,
roller skating, skating, badminton, fishing, rugby, ball sports, street hockey, ice boating,
cheerleading, ice skating, martial arts, fencing, shuffleboard, weight lifting, hockey,
swimming, water polo, dancing, curling, snow skiing, tennis, snowboarding, softball, and
baseball. Results are robust if restricted only to the five most popular American sports:
football, baseball, basketball, soccer, and hockey.
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but this growth occurred only in the adult population. In fact, the po-
pulation under five in these areas grew slower relative to the rest of the
country. Due to data limitations discussed above, I cannot combine
population data with the NEISS data; however, I do know the cities
where NEISS hospitals are located and can analyze census county po-
pulation estimates separately to see how trends differ once 3G arrives.
Table A6 shows that 3G expansion coincided with the total population
growing 1.9% faster than non-3G areas, consistent with AT&T ex-
panding to areas with faster market growth. Nevertheless, the popula-
tion between 8 and 13 did not differ at all between 3G and non-3G
areas, and in fact the population younger than five actually grew 3.8%
slower once 3G arrived. Fast total population growth, stagnant older
child growth rates, and decreasing younger child growth rates are
consistent with growing adult populations but decreasing birth rates.
Column 4 of Table A6 tests this hypothesis using the CDC Natality data
and confirms that 3G expansion coincided with lower birth rates. One
could argue that 3G expansion causes adults to move to the area, and by
some stretch you could even say smartphones lower birth rates in a
similar mechanism to the argument for their increasing injuries, how-
ever these trends cannot explain the increase in injuries and would not
misattribute their cause to 3G expansion.

In fact, the demographic changes suggest that the regressions un-
derestimate the true effect of 3G expansion on child injuries. The
analyses above assumed that population growth rates did not diverge
across hospitals over the sample. However, if injuries increase at the
same time as the population shrinks, the effect on the injury rate is
much larger than what I have estimated. Table A7 reports estimates
after adjusting for population trends and shows effects 40–75% larger
than in the unadjusted data, but because the adjustment is inexact, the
results are illustrative yet inconclusive.

5.3. Treatment radius

The analysis in this paper is based on coding hospitals as treated by
AT&T's 3G network as soon as AT&T covers a city within 35 miles. This
radius does not reflect anything about the distance between the patient
and the hospital, but rather accounts for the fact that when AT&T says
Chicago, for example, gets 3G, the press release means the Chicago
metropolitan area. Section 3.2 shows that defining the radius too short
leads to miscoding that exacerbates measurement error. Yet it is not
unusual to wonder what would happen if the radius was defined more
strictly.

Table A8 reports the difference-in-differences and the triple differ-
ences results for the 35 mile radius used throughout the paper and
compares them to a stricter 15 mile radius. The results are consistent
across the two specifications. In the difference-in-differences approach,
the regressions report a larger treatment effect under the stricter radius.
Under the triple differences columns, the 15 mile radius shows that
there is a significant increase in injuries to all children after 3G arrives,
and while younger kids see a bigger increase, it is not as different as in

the 35 mile treatment. The difference between the coefficients in the
two specifications is not statistically significant, and the story is broadly
consistent across them. One might be concerned about the weaker
treatment effect for the younger children in the triple difference ap-
proach, and it might be because there is treatment heterogeneity across
cities that the different specifications picks up. However, there is no
clear a priori story for why they differ, and certainly no way to test it
with the data restrictions. More likely the minor differences are caused
by the measurement error problems discussed at length in Section 3.2.

6. Discussion

I use the rollout of 3G to make a case for a causal effect of smart-
phone-induced child injuries. Hospitals experienced an increase in
emergency department visits after getting 3G coverage, but only for
children under five. Furthermore, the activities associated with these
injuries are consistent with caregivers being distracted.

One concern with the analysis is that data privacy issues prevent me
from using controls to eliminate confounding factors; however, this
concern is small. The most convincing piece of evidence against an
alternative hypothesis is the triple difference results that show children
five and older at the same hospitals experienced no significant increase
in injuries. Furthermore, the confounding factor would have to follow
the very specific patterns revealed in the empirical analysis. This paper
has convincingly made the case for smartphones causing injuries, and
hopefully future work will generate greater precision on the size of the
effect.

The results have ambiguous welfare implications since I do not
model the child's utility. If caregivers decide to use the smartphone
while considering the child's utility like a unitary household model,
then we would conclude that the whole household is better off, even
with the increased injury risk. But if the caregiver does not consider the
child's wellbeing or does not realize the phone is a distraction, then the
caregiver might be benefiting at the expense of the child. Even if we
chose the correct set of modelling assumptions, some might find it
appalling to believe that any use of a phone could rationalize increasing
the risk of harming a child. On the other hand, others could argue that
children are currently overprotected and could benefit from more
skinned knees and broken arms, and therefore smartphones improve
welfare. The best public policy approach, therefore, may be to increase
awareness of the risk and allow households to choose for themselves.

Although the welfare conclusions are ambiguous, the results cer-
tainly raise questions as to other domains where smartphones have an
effect. Because injuries occur immediately and can require costly care,
one would think caregivers would be extra diligent in avoiding dis-
tractions. But that does not seem to be the case. When the consequences
of distractions are further in the future, such as inattention during key
learning opportunities, caregivers may be even slower to adjust. Future
research may include looking at how smartphones affect investments in
children, student learning in classrooms, and employee productivity.
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Appendix A

Fig. A1. Geographic distribution of NEISS hospitals and initial 3G coverage. Notes: Dot size indicates treatment length— largest dots had 3G in July 2008, smallest dots never received it
in the sample frame. Map omits Puerto Rico, which had 3G July 2008.

Table A1
Cities with hospitals in NEISS according to when they received AT&T's 3G network.

Have 3G before July 2008

Arizona: Phoenix, Sacaton, Tucson
California: Mountain View, Oakland, Pasadena, Torrance, Vallejo
Colorado: Denver
Connecticut: New Haven
Florida: Fort Myers, Port Charlotte
Georgia: Atlanta, Covington, Douglasville, Riverdale, Fort Benning
Illinois: Chicago, Oak Lawn, Oak Park
Louisiana: Baton Rouge
Maryland: Gaithersburg, Lanham
Massachusetts: Boston, Pittsfield
Michigan: Wyandotte
Minnesota: Winona
Missouri: Kansas City, Saint Louis
Nevada: Las Vegas
New Jersey: Atlantic City, Pomona, Teaneck
New York: Bronx, Brooklyn, Geneva, New Springville, Patchogue
North Carolina: Burlington, Greensboro
Ohio: Columbus, Dayton
Pennsylvania: Coatesville, Philadelphia, Pittsburgh, Ephrata
Puerto Rico: San Juan
South Carolina: Winnsboro
Tennessee: Johnson City
Texas: Corpus Christi, Denton, Ft Worth
Utah: Orem
Washington: Everett, Seattle, Tacoma

Receive 3G Aug–Dec 2008

Arkansas: Hope, Nashville
California: Mariposa
New Jersey: Bridgeton
Ohio: Martins Ferry

Receive 3G in 2009

Alabama: Tuscaloosa
Illinois: Canton, Chester, Hopedale, Pekin, Peoria, Urbana
Michigan: Pigeon, Zeeland
Mississippi: Tupelo
Oklahoma: Holdenville
Pennsylvania: Waynesboro
Texas: San Angelo
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Have 3G before July 2008

Virginia: Wytheville

Receive 3G in 2010

Alabama: Brewton
Idaho: Driggs
Mississippi: Tylertown
New Hampshire: Claremont, Littleton
Oklahoma: Fairfax
Oregon: Prineville
Pennsylvania: Sunbury
Virginia: Marion
Wisconsin: Chilton

Never receive 3G

Alabama: Anniston, Jacksonville
Indiana: Washington
Iowa: Lake City, Rock Rapids
Kansas: Medicine Lodge
Michigan: Escanaba
Mississippi: Kosciusko
Missouri: Mountain View
Montana: Baker, Forsyth, Libby
Nebraska: Alliance, Hastings, Scottsbluff
North Dakota: Bottineau
Oregon: Heppner
South Dakota: Aberdeen
Tennessee: Celina
Wyoming: Worland

Notes: A city is defined as receiving 3G if a city within 30 miles received 3G.

Table A2
Factors that predict 3G entry in a county where a NEISS hospital is located.

(1) (2) (3) (4) (5)

log(Population 2010) 1.620*** 1.344** 1.380**

[0.130] [0.182] [0.179]
log(Population density) 1.441*** 1.198* 1.204*

[0.0889] [0.127] [0.127]
log(Med. HH income) 4.066*** 1.534

[1.900] [0.751]
Population under 5 0.863

[0.107]

Notes: The reported coefficients are hazard ratios from Cox hazard models. All regressions have 97 observations. Data come from U.S. Census Bureau (2014).
*** p < 0.01.
** p < 0.05.
* p < 0.1.

Table A3
Difference-in-differences specification check.

IHS Log(Count + 1) Log(Count) Count/Mean Poisson

3G 0.0956** 0.0841** 0.0934** 1.335** 0.0829*
[0.0456] [0.0377] [0.0400] [0.520] [0.0459]

N 54,865 54,865 47,181 54,865 54,865

Notes: Each column except for the last provides a different specification of the dependent variable: IHS is the inverse hyperbolic sine used in the paper; Log(Count + 1) adds one to all observations
so that a hospital-month-age with zero injuries recorded is included in the regression; Log(Count) takes the log of the observation and omits zeroes; Count/Mean uses the raw count as the dependent
variable and the coefficient is then scaled by the sample mean to get a percent increase at the mean. The last column is a Poisson regression using the count as the dependent variable.

** p < 0.05.
* p < 0.1.
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Table A4

Triple difference specification check.

IHS Log(Count + 1) Log(Count) Count/Mean Poisson

3G*(Age < 5) 0.0496** 0.0463** 0.0382* 0.979*** 0.011
[0.0224] [0.0181] [0.0210] [0.256] [0.0220]

3G 0.046 0.0378 0.0553 0.356 0.0719
[0.0434] [0.0354] [0.0387] [0.334] [0.0479]

N 55,445 55,445 47,129 55,445 55,445

Notes: See Table A3 notes.

Table A5
Coefficients for figures.

Fig. 3 Fig. 4 Fig. 5

All Poisoning Sports
Age 0 0.088* −0.031 −0.019

[0.047] [0.029] [0.044]
1 0.13** 0.063 −0.024

[0.054] [0.039] [0.044]
2 0.084** 0.078** −0.026

[0.040] [0.036] [0.040]
3 0.079** 0.037 0.0014

[0.039] [0.022] [0.044]
4 0.066* 0.015 −0.0054

[0.038] [0.018] [0.039]
5 0.045 0.011* −0.014

[0.031] [0.0056] [0.036]
6 0.049 0.013** 0.019

[0.037] [0.0051] [0.039]
7 0.063** −0.0043 0.022

[0.031] [0.0047] [0.032]
8 0.061* 0.0065 0.049*

[0.032] [0.0039] [0.029]
9 0.025 0.00038 0.025

[0.026] [0.0033] [0.026]

Notes: Coefficients for all figures in the paper.
***p < 0.01.

** p < 0.05.
* p <0.1.

Table A6
3G entrance and county population trends.

Population total Population between 5 and 13 Population under 5 Birth rate

3G 0.019** 0.0028 −0.038** −0.024***
[0.0075] [0.013] [0.017] [0.0079]

Observations 1144 1144 1144 1010

Notes: Population data come from Census County Population Totals: the April 1, 2010 to July 1, 2015 vintage and the April 1, 2000 to July 1, 2009 vintages. The birth rate data come
from the CDC's Natality data set, and birth rate is defined as the number of births divided by total population in the given year. Standard errors clustered by county. All dependent
variables are in logs.

*** p < 0.01.
** p < 0.05.
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Table A7
Treatment effects after adjusting for population trends.

Difference-in-differences for under 5 Triple difference for 10 and under

Raw Adjusted Raw Adjusted
3G 0.11*** 0.15*** 0.064** 0.027

[0.031] [0.032] [0.027] [0.020]
Age < 5 0.27*** 0.34***

[0.017] [0.020]
3G*(Age < 5) 0.041*** 0.12***

[0.0100] [0.018]
Observations 44,534 44,534 97,027 97,027

Notes: The dependent variable in the “Raw” columns is the log ED visits in hospital h at month t for age a. In the “Adjusted” columns, the log ED visits are adjusted based on 3G cohort
population trends. A 3G cohort is all hospitals that receive 3G at the same month and year; those that do not receive it in the sample fall into the same cohort. Annual population trends
are estimated from Census County Population Totals (see note on Table A6) by cohort at the county level then merged onto the NEISS data. Standard errors clustered by 3G cohort.

*** p < 0.01.
** p < 0.05.

Table A8
Treatment effects allowing for different treatment radius.

Difference-in-differences for under 5 Triple difference for 10 and under

35 mile 15 mile 35 mile 15 mile
3G 0.096** 0.12** 0.046 0.088*

[0.046] [0.050] [0.043] [0.049]
Age < 5 0.54*** 0.56***

[0.037] [0.037]
3G*(Age < 5) 0.050** 0.036

[0.022] [0.023]
Observations 54,865 54,865 120,703 120,703

Notes: The table reports different specifications for the 3G treatment. For the X mile radius at the top of the column (35 or 15), the hospital is treated as soon as AT&T covers any city
within X miles of the hospital. The 35 mile specification is used throughout the paper and presented for comparison to the stricter 15 mile specification. Section 3.2 discusses the
measurement problems that come from using the 15 mile treatment.

*** p < 0.01.
** p < 0.05.
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